
TcJ 
AD 

Technical ReportETLTR-71-4 

BACKSCATTERING OF ELECTROMAGNETIC WAVES 
FROM A SURFACE COMPOSED OF TWO TYPES 

OF SURFACE ROUGHNESS 

by 
Richard A. Hevenor 

October 1971 

Approved for public release; diatribution unlimited. 

• •pioduod by 

NATIONAL TECHNICAL 
INFORMATION SERVICE 

IpirnglLld.  V«     »151 

D D C 

MAR    1   1972 

Einns 
B 

Or* 

(Ol* 

U.S. ARMY ENGINEER TOPOGRAPHIC LABORATORIES 
FORT BELVOIR, VIRGINIA i 



- 

UNCLASSIFIED 

DOCUMIMT CONTROL DATA   RAO 

U. S. Army Engineer Topographic Laboratories 
Fort Belvoir, Virginia 22060 

Undassified 

BACKSCATTERING OF ELECTROMAGNETIC WAVES FROM A SURFACE COMPOSED OF TWO 
TYPES OF SURFACE ROUGHNESS 

Report 
rrmmmmwm 

I (Tfp* »I Hfmi m>4 iMkMlra 4mt—) 

mmwmnssnsai 
Richard A. Hevenor 

«. HBPOMT e*Tt 

October 1971 

a. MMMM« "•4A062112A854 

»«.   TOTAL N*. 

 94 10 
M. emtiNATeirt MBPONT MUMVCIVW 

ETL-TR714 

•ft. OTMan iN»eiiT MMM (*ar *am mm*» i SSm^TSmSCSl' 

I*. MSVMMITM« •TATtkMNT 

Approved for public rdeaae; distribvtion unlimited. 

(i. wSWKSSB&SSv HOTC« 

ii. i^Ml 

1»    irOHIOIIIN« Ult-ITAIIT  «CTIVITT 

U. S. Army Engineer Topopaphic Laboratories 
Fort Belvoir, Virginia 22060 

ir»  

Thi» report presents a vector theory for the backscattering of electromagnetic waves from a random, 
rough surface. The basic technique used is that employed by Dr. Adrian K. Fung in an earlier work. The 
■urfaces used in the report are those that are generated by a stationary gaussian random piocess as opposed 
to surfaces generated by a random array of objects. The former type of surface is assumed to simulate 
many of the vegetation-free sections of the earth. It is important to understand the baaic characteristics 
of scattering from such surfaces for the purpose of aiding military geo^aphic «nalycic by radar. 

DD /r-HTS SSi«»rS^ 
93 UNCLASSIFIED 



U. S. ARMY ENGINEER TOPOGRAPHIC LABORATORIES 
FORT BELVOIR, VIRGINIA 

Technical Report ETL-TR-7I-4 

BACKSCATTERING OF ELECTROMAGNETIC WAVES 
FROM A SURFACE COMPOSED OF TWO TYPES 

OF SURFACE ROUGH1SESS 

Projccf 4A()62II2A854 

October 1971 

Distrihulcd hy 

The Commanding Offhrr 
U. S. Army Engineer Tupographic Lahoratorin« 

Prepared by 

Richard A. Hevenor 
(icographir Information Syslcm.s Brain h 

(icographi<- Sciencea Division 

\|>|irox. <| lur public rrlraw: diMlribiition unlimited. 



SUMMARY 

This report presents a vector theory for the backscattering of electromagnetic 
waves from a random, rough surface. The basic technique used is that employed by 
Dr. Adrian K. Fung in an earlier work. The surfaces uted in the report are those that 
are generated by a stationary gaussian random process as opposed to surfaces gener- 
ated by a random array of objects. The former type of surface is assumed to simulate 
many of the vegetation-free sections of the earth, it is important to understand the 
basic characteristics of scattering from such surfaces for the purpose of aiding military 
geographic analysis by radar. 
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FOREWORD 

The authority for performing the work described in this report is contained in 
Project 4A062II2A854, Military Geographic Analysis. 

r"he theory described herein is the result of in-house work and is based partially 
on the work of other investigators—in particular, Dr. Adrian K. Fung. The author 
wishes to thank Mr. Francis G. Capect; aid Mr. Regis J. Orsinger for aiding in checking 
the derivations and in writing the computer program. This task was performed under 
the supervision of Mr. Bernard B. Scheps, Chief, Geographic Information Systems 
Branch, and Dr. Kenneth R. Kothe, Chief, Geographic Sciences Division. The work 
was under the general direction of Mr. Gilbert G. Lorenz, Technical Director, U. S. 
Army Engineer Topographic Laboratories, U. S. Army Topographic Command. 

in 



r" 

CONTENTS 

Section 

il 

III 

IV 

Tit'.e 

SUMMARY 

FOREWORD 

GLOSSARY OF SYMBOLS 

INTRODUCTION 

1. Purpose 
2. Background 

ANALYSIS 

3. Geometry of Scattering Problem 
4. Horizontal Polarization 

a. Like-Polarized Term 
b. Depolarized Term 

5. Vertical Polarization 
a. Like-Pohrized Term 
b. Depolarized Term 

6. Consideration of Local Vertical Components 

DISCUSSION 

7. Evaluation of Results 

CONCLUSIONS 

8. General 
9. Specific 

APPENDICES 

A. Derivation of the Scattered Fields from a Slightly 
Rough Surface fur Vertical Polarization 

B. Derivation of Averages Used to Calculate Mean 
Hackscattered Pol wer 

C. Evaluation of Integrals 

Page 

ii 

iii 

v 

10 
26 

28 
36 
37 

41 

43 
43 

76 

83 

90 

IV 



^ 

GLOSSARY OF SYMBOLS 

0° backscatter coefficient; ratio of differential radar cross section to differential 
surface area. 

7 backscatter coefficient; ratio of differential radar cross section to differential 
projected area. 

0 angle of incidence. 

O' local angle of incidence. 

X incident wavelength. 

k wavenumber in the propagating medium above the surface. 

k' wavenumber in the propagating medium below the surface, 

p (x, y) function describing the total composite surface. 

s (x, y) function describing the slightly rough surface. 

Z (x, y) function describing the large undulations. 

n, unit vector in the direction of the incident wave. 

"r range vector from the origin of the (x, y, z) coordinate system to the surface 
point. 

n unit vector normal to the total surface, p(x, y). 

P the point where the scattered field is computed. 

R, unit vector in the direction of P from the origin of the coordinate system. 

rtj unit vector in the direction of P from a surface point. 

a) angular frequency of the wave. 

ß permeability of the medium hi low the surface. 

e permittivity of the medium below the surface. 

T) intrinsic impedance of the medium above the surface. 

E total electric field on the surface. 

II total magnetic field on the surface. 

Et scattered field at point P and in the direction defined by the unit vector, n^. 

R the distance from the origin to the point P. 
-i 
E, locally incident field. 

ül Fresnel reflection coefficient for a local horizontally polarized plane wave. 



GLOSSARY OF SYMBOLS (Cont'd) 

R|( Fresnel reflection coefficient for a local vertically polarized plane wave. 

S (k^, k ) Fourier transform of the slightly rough surface function s (x, y). 

C (r) autocorrelation coefficient for the large undulations. 

C, (r) autocorrelation coefficient for the slightly rough surface. 

VI 
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BACKSCATTERING OF ELECTROMAGNETIC WAVES 
FROM A SURFACE COMPOSED OF TWO TYPES 

OF SURFACE ROUGHNESS 

I. INTRODUCTION 

1. Purpose. The purpose of this report is to present a general vector theory for the 
backscattering of electromagnetic waves from random, rough surfaces. The surfaces 
under consideration will be those generated by a stationary, random process as opposed 
to those generated by a random array of objects. 

2. Background. At the present time, the method of extracting military geographic 
information about terrain features from radar is almost solely dependent upon the qual- 
itative analysis of radar imagery by a photointerpreter. Radar should be a quantitative 
tool in view of the controlled frequency, look angle, and self-contained illumination 
system.    In order to improve upon the present process and to make it more quantita- 
tive, an understanding of the process of electromagnetic wave interaction with and 
scattering from natural surfaces must be obtained. A general solution to the problem 
of plane-wave scattering from an arbitrary rough surface is still lacking. However, re- 
cent advances in vector approximate solutions have yielded considerable insight into 
the scattering phenomena. Radar scattering theories are basically separated into two 
broad classes:  those which deal with surfaces generated by stationary, random proc- 
esses; and those which deal with surfaces generated by a random array of objects. This 
report will deal exclusively with stationary, random processes because they are, in gen- 
eral, more realistic of natural terrain than the random array of objects. The parameters 
that affect the scattering of an electromagnetic wave from a rough surface must be iso- 
lated and molded into a vector theory which will allow the calculation of average re- 
turn power. The average return power can then be used to calculate the backscatter co- 
efficients 0°  and > . The backscatter coefficient a" can be defined as the ratio of 
differential radar cross section to differential surface area, while y can be defined as 
the ratio of differential radar cross section to differential projected area. A simple re- 
lation exists between y and a"  which is: 

a0 = y cos $ 

where 6 is the angle of incidence. The two backscatter coefficients a" and y are 
functions only of terrain properties and are not functions of radar parameters. One of 
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the most difficult problems associated with rough-surface scatter is the question of de- 
polarization. If a plane wave is incident onto a rough surface with, say, horizontal po- 
larization, it is possible to receive not only a horizontal component but also a vertical 
component. This is due to the fact that the rough surface will scatter some of the ori- 
ginal incident Held into a different polarization, i.e., depolarization takes place. This 
very brief initial statement on depolarization is sufficient to permit a look into the 
fundamental parameters that affect the scattering of an electromagnetic wave from a 
rough surface. Five basic parameters listed and discussed by Cosgriff, Peake, and Taylor1 

are: 

a. Surface Roughness 

b. Angle of Incidence 

c. Polarization 

d. Complex Dielectric Constant 

e. Frequency 

The surface-roughness parameters would include such things as the probability distri- 
bution of the surface heights about a mean plane and the surface autocorrelation func- 
tion. The surface-roughness parameters are the predominant factors in determining the 
scattered field. A qualitative understanding of surface roughness can be obtained through 
the Rayleigh criterion which relates the "roughness" of a surface to wavelength and angle 
of incidence. To this date, no thorough quantitative measure of surface roughness has 
been developed which may explain the fact that a general, exact solution to the problem 
of wave scattering from rough surfaces is still lacking. 

! The angle of incidence refers to the angle between the direction of the incident wave 
and the vertical. The plane of incidence is then the plane containing the wave-propaga- 
tion direction and the vertical. In Fig. 1, the arrow located in the xz-plain- represents 
the direction of the incident wave with angle of incidence, 0, and the plane of incidence 
is the xz-plane.   At the far ranges, the angle of incidence will be large which usually re- 
sults in difficult problems with shadowing. At near ranges, the angle of incidence will 
be small. The angle of incidence at a point on a surface can also be defined as the angle 
between the direction of the incident wave and the normal to the surface. In this case, 
the angle of incidence is usually referred to as the local angle of incidence. 

The polarization of an electromagnetic wave is defined by the direction that the elec- 
tric field vector takes. If this direction is constant in time, then, the wave is said to be 
linearly polarized. This report will consider two types of linear polarization in particular; 

'Coagriff, Peake, Taylor. Terrain Scattering Propertiei for Senior Syilem Detign (Terrain Handbook II), The Ohio 
State Univenity, Engtaecrinc Experiment Station Bulletin No, 181. 
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Fig. 1. The arrow located in the xz-plane represents the direction of the incident wave 
with angle of incidence, 0, and the plane of incidence is the xz-plane. 

horizontal and vertical. Horizontal polarization occurs when the electric field vector is 
perpendicular to the plane of incidence and the magnetic field vector lies in the plane of 
incidence. Vertical polarization occurs when the magnetic field vector is perpendicular 
to the plane of incidence and the electric field vector lies in the plane of incidence. Po- 
larization effects come into being not only because of the dine lion of the incident field 
vector but because of the depolarization properties of the surface. The complex dielec- 
tric constant is a function of the surface electrical properties (permittivity and conduc- 
üvity) and the frequency of the incident wave. 

Two basic techniques have evolved for working the problem of electromagnetic wave 
scattering from a surface generated by a stationary random process.   This type of sur- 
face is one in which the elevations or heights of the surface above a mean plane are dis- 
tributed with a certain probability density distribution function. The distribution func- 
tion usually assumed is gaussian in order to help simplify the calculations. The tangent- 
plane method of computing wave scattering problems consists of approximating the local 
fields at a point on the surface by the fields which would be present on a plane tangent 
to the surface at the desired point. The calculated surface fields are then placed in the 
Helmholtz integral for the scalar case or the Stratton-Chu integral for the vector tase. 
The scattered field in any particular direction can then be computed. In order for the 
tangent-plane approximation of local surface fields to be correct, the radii of curvature 
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of the surface at all point« must be much greater than the incident wavelength. An ex- 
act geometrical relationship which gives the criterion for the tangent-plane method was 
developed by Brekhovskikh  and can be stated as follows: 

4irrccosS'»X 

where r. is the smaller of two radii of curvature of a surface at a point. The angle d' is 
the local angle of incidence, and X is the incident wavelength. Therefore, it can be 
easily seen that the tangent-plane method will allow only the use of smoothly undulat- 
ing surfaces and that no roughness which is smaller than a wavelength can be tolerated. 

The other basic method of solving the scattering problem is known as the small per- 
turbation method. In this method, the Fourier series or Fourier transform is used in a 
perturbation series to solve for the unknown fields above and below the rough surface. 
The exact boundary conditions are used; and, theoretically, this method would yield a 
good solution to the scattered field from any surface if enough terms of the perturbation 
series could lie computed. In actual practice, it becomes exceedingly difficult to take 
much more than the first term of the series, particularly if finite conduction on the sur- 
face is allowed. Since the perturbation series effectively represents the results of the 
surface perturbations about a flat plane, then only slightly rough surfaces can be tol- 
erated with this method. A quantitative definition of a slightly rough surface could be 
as follows: 

lks(x,y)|< I 

where k is the wavenumber in the propagating medium above the surface and s(x,y) 
is a surface function representing elevations from a mean plane to the surface. 

The tangent plane method has been shown to yield good results for the average back- 
scattered power with the like-polarized component, at least for small angles of incidence 
(00-2()0) when a gaussian autocorrelation function is used. When an exponential corre- 
lation function is used, better results are obtained for the like-polarized term. It can 
easily be shown, however, that a pure exponential correlation function leads to an imagi- 
nary surface slope distribution so that results using this correlation function are very mis- 
leading. The depolarized components from the tangent-plane method depend upon the 
sum of the two Fresnel reflection coefficients which does not compare well with experi- 
mental results in general. 

Many natural surfaces can be assumed to be made of large undulations with small per- 
turbations superimposed. Therefore, a correct theory on the backscattering of electro- 
magnetic waves from rough surfaces should consider both types of surface roughness. 

2 Beckmann indSpiMJchino, Tha Scatwriim of EhetronrngMtie Warn from Rough Surf ant, Pcigimon Yiem 1963, 
p. 29. 
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A recent paper by Fuiig and Heias-Lien Chan3 has done this for an incident wave with 
horizontal polarization by using the small perturbation method up to the first-order 
terms as an approximation of the fields oo the surface. When the zero-order terms of 
the small perturbation solution are used as estimates of the surface fields and placed in 
the Stratton-Chu integral, the tangent-plane solution results. The paper' y Fung and 
Chan did not consider the effects of along-track surface slopes or the effects of higher 
order slope terms in the power calculation. Our purpose here was to apply Fung's ideas 
such that the effects of along-track slopes and higher order slope terms are considered in the 
horizontal polarization solution and to perform the entire solution for an incident wave 
with vertical polarization. For the vertical polarization solution, it was necessary, first, 
to solve the problem of a vertically polarized wave being scattered from a slightly rough, 
dielectric surface. This derivation is performed in Appendix A. In the case of horizontal 
polarization, use was made of Rice's result4 as derived by Fung.' 

In practically all problems concerning the scattering of electromagnetic waves from 
rough surfaces, certain assumptions must be made in order to make the solution analyti- 
cally manageable. The present solution is no exception. Some of the more basic assump- 
tions which were made are: 

(1) Shadowing effects are neglected. 

(2) Only the far field is calculated. 

(3) Multiple scattering is neglected. 

(4) The density of the scattering elements is not considered. 

(5) The treatment is restricted to surfaces that are generated by stationary 
random processes and which yield the elevation values distributed with a two- 
dimensional gaussian density distribution function. 

In addition to the above assumptions, certain mathematical assumptions are made 
which allow an analytical expression to be obtained. The main assumption of the 
tatigent-plane method in computing the fields at the surface was not used. 

The derivations will be preceded by a discussion of the geometry of the problem to be 
solved. Following this, the Stratton-Chu integral will be introduced and modified for 
future calculations. Next, the entire scattering problem is derived for the case of a hori- 
zontally polarized incident plane wave. The final result is the scattering coefficient 0° 

3 A. K. Fin« and HiiM-Lien Chan, "BaciucaUerfc« of Warn by CompMite Rough Surfaoea." IKF.K Trmmehoni MI 

AnlrnnaandProfMgmtion, Sepiember 1969. 
4S. 0. Rice, "Rcdedion of Elcctrom^netic Warn from SUghtiy Rough Surfacea,** Communicuiiont on Fun and 

Applied Mathematict, Vol. 4, 1951. 
5 A. K. Fui«, "Mechantama of Polarised and Depolwiaed ScaMering from a Rough Ufelectrir Surface," Journal of 
the Franklin iiutiluto, VoL 285, No. 2, February 1968. 



for both the like and depolarized terms. The same problem is then solved for the case 
of a vertically polarized incident plane wave. The final results appear as graphs of o0 

versus incident angle for various types of soils, moisture contents, surface-roughness 
parameters, and frequencies. A discussion of the final results and their possible meaning 
concludes the report. Throughout the report, the rationalized MKS system of units is 
used. The notation used in this report mil be the same as that employed by Fung and 
Hsias-Lien Chan4 in their composite surface theory so that the two results can be 
compared. 

II. ANALYSIS 

3.    Geometry of Scattering Problem. A plane electromagnetic wave with a harmonic 
time dependence of cxpQuit) is incident onto a rough surface described by a function 
p(x,y) . This function p(x, y) represents the total elevation from a mean plane to the 
surface at an arbitrary point (x, y). The total surface shall be composed of the sum of 
large undulations and a slightly rough surface. The large undulations shall be repre- 
sented by the general function Z(x, y) and shall be required to conform to the tangent- 
plane method. The slightly rough surface shall be designated by B(X, y) and will be re- 
quired to conform to the requirements of the small perturbation method. The relation 
among these surface functions is then p(x,y) = Z(x, y) + s(x, y). It will be assumed that 
Z(x, y) and s(x,y) are generated by independent stationary random processes with 
zero means. The average values of Z(x, y) and »(x, y) are then the xy-plane. The ge- 
ometry of the scattering problem is given in Fig 2. A right-handed rectangular Cartesian 
coordinate system is set up near the surface such that the xy-plane is the mean surface 
height or elevation. The unit vector nj   is a vector in the direction of the incident wave. 
The angle d is the incidence angle. The vector T is a range vector from the origin of 
the coordinate system to a surface point. The unit vector if is a normal to the total sur- 
face of p(x£2. The field point P is where the scattered field is to be computed. The 
unit vector R,   points from the origin of the coordinate system to the field point P. 
The unit vector ItJ   is in the direction of the field point P from a surface point. When 
the point P is placed in the far field, it can be seen that rT^ = K1. For the case of back- 
scattering. It s -111 . The medium above the surface is assumed to be free space. The 
medium below the surface is a dielectric with zero conductivity. This is a good approxi- 
mation for many soils especially at high radar frequencies. Another right-handed rec- 
tangular Cartesian coordinate system ( x, y, z) is set up with the origin sitting on the 
large undulations Z(x, y) such that the xy-planoititangent to Z(x,y) at an arbitrary 

* A. K. Fiu« and IWo-l if n Chan. 
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Fig. 2. Geometry of the scattering problem. 

point. The z -axis is then normal to the large undulations. The propagation constant in 
the medium z < p (x, y) will be designated k' and is equal to   u   /pe . The param- 
eters inside the radical sign represent the permeability and permittivity, respectively, of 
the material in the medium below the surface. 

The scattered field in the direction defined by the unit vector f^ is then ob- 
tained from the Stratton-Chu integral as stated by Silver:7 

K = KTf2 x / ["*£ •**$ «(^ * ff)! exp(jkn, •t)ds. (I) 

E and 11 are the total electric and magnetic fields on the surface and t? is the intrinsic 
impedance of the medium above the surface. The vector n  is normal to the total surface. 

R is the distance from the origin to the point P. The parameter k is the wavenumber 
in free space and is equal to 2ir/\ where X is the wavelength. All quantities are known 
in equation (I) except the (wu surface-field vectors.   The surface fields can be written 
in terms of the local coordinate system (x, y, z) as follows: 

'Samurl SiNfr, "Microwaw Anlemu Theory and UMfcn," MIT fU4. Uh. Sfrin 12, McUrawlUU, 1947. p. 161. 



E = ?Ej +fEr +rEr 

where it, ft't are unit vectois in the local coordinate system (x, y, z). The surface 
field components E^, E^, E^- are in terms of the local coordinates. The first problem 
which miift be solved is to obtain it, f, and"? in terms of T, j, and k which are unit 
vectors in the (x, y, z) system. The surface functions will no longer be written with their 
(x, y) arguments: 

2 =(.rzt .fzy +ir)(i + z' +z;)^ - (.Tz, -fz, +10 
a 7 ay 

where Z% = r— and Z   = g— . These terms are representative of surface slopes in x 

and y.   For small slopes, the term Z* + Z2  is to Le considered small with respect to 
one. Throughout this report, terms involving Z*  and Z2 will be considered negligible 
with respect to terms involving Zx  and Z   . The direction that the y-axis takes is de- 
fined by the unit vectors if,   and t: 

f = (^xftyltxlfj 

*= fxt 

It. = i sinfl - K cos Ö . 

By defining the local coordinate system (x, y, z) in the above manner, a local plane of 
incidence has been established which is defined by the vectors It,   and ?. It can be 
seen that thif local plane of incidence does not, in general, coincide with the original 
plane of Incidence defined bv the unit vectors rf)   and k. The two planes will only co- 
incide when Z    is equal to zero. The local angle of incidence (ff) is defined as the 
angle between t and -it,, and can be computed as follows: 

cosO'=-nl -z* cos0 + Zg sin 0 . 

The unit vectors y and x can be computed: 

z   • n,  = |iZ cos* + j (sinff - Z]icos0) +kZ. sin«) 

|z x n11 * sin tf - Z% cosö 

y • IZyD^osfl + j + KZ.l^sinfl 

x • I -J^ I)0  cosO +11Z, 

8 



where Do * (sin ö - Zx cos fl)"1  and a Zj  term has been dropped in D0 . The term 
n x E can be calculated in terms of the surface field components Eg, E_ Ef  and the 
unit vectors i,j,andit: 

n x E = f [E^. S^I^cosJ - Ey - E, 8y 1 +/(Er +^2^0,, cos« + E, sj 

The subscripts on the variables s and p refer to partial derivatives with respect to the 
subscripted variable. The tnrm n x H can be written directly: 

n x ft = ifl^Z^cosJ-H- -H^J+JfUy + ^2^^0*0 +Hj^) 

^(P.H-.p.lLJ. 

In the case of backscattering, the term n2 x (n x E) is calculated as • n, x (n x E): 

-n, x(nx£) = -(Icosö+k8intf)(Et + Ej Z^ D0co8tf + Ej i^) 

+ j (^ (Zy Uoco8J fl + py «in ») - F^ (cos Ö -» p^ «infl) 

- Ey 8y cos Ö |   . 

The final term to be computed is iij JC (n2 x ( n x II)):  n2 x (n   x (n x II)) - -j (II- + 
II- Zy Doeosö + llf sj -(leosO+ 1x^110)11^ (Z   1),, eos2 Ö+py sinö)-llf (eosO + p, sinO) 
- Hf sy cos 91 . The above terms ean be placed in tne Stratton-Chu integral to obtain an 
expression for the baekseattered field in terms of the surface field components in local 
coordinates: 

E, = K   / / | j | Ej Zy l)o cos2 9 - V\ cos» - E, 8y co» tf + IJH; 

*^11- Zy Üo cos Ö ♦ nllj s, + sinO (py E_ - p, E^ )| 

- (i cosff + k 8intf)(E_ + Ej Zy D0coa« + E, %% 

- 7?Hj (Zy l)ucosJfl + py sinfl) + t? ll_(co8 9 + p^ sin 0) 

+ ^11^ sycosO| | exp(-jkfi, . f)dydx   . (2) 

The limits of integration are over the illuminated area. The only unknowns in equation 
(2) are the six surface field terms expressed in local coordinates. In order to proceed 
further, a particular incident polarization must be chosen and then the local fields 

calculated. 
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4.     Horizontal Polarication. 

a.     Like-Polarized Term. A horizontally polarized plane wave with unit ampli- 
tude is incident onto the statistically rough dielectric (zero conductivity) surface p(x, y). 
It shall be required to obtain analytical expressions for (^ H, the scattering coefficient 
for the like-polarized return, and for o° v , the scattering coefficient for the depolarized 
return. In order to do this, an expression must first be obtained for EHH, the like- 
polarized backscattered field. From this, the mean power density < EHH E^H > must 
be calculated. Similarly, equations n>ust be derived for EHV  and < EHV E *v> in order 
to calculate o° v . The brackets are here used to denote the fact that an average of the 
quantity inside is being taken. The aster*, k is used to indicate the complex conjugate. 
a°H  can then be calculated from the equation 

a. 
p . lim      4irR2 <EHHE4i1> 
HH R,«    EjTE|i 

Where E, is the value of the incident fieljl without regard to polarization. The same 
method can be used to determine a° v. The incident wave for horizontal polarization 
can be written as 

Ej = j exp |-jk(x8in0 - zco8 0)| . 

The time harmonic of exp (jut) has been suppressed and will not be carried along any 
further. 

in order to determine the surface fields in local coordinates, the incident 
wave must first be written in terms of the local coordinates. The locally incident field 
Ej is then 

t\ - |x(x.j) + y(y .j) + i(i . j)j exp |-jk(xsin« - Zcos*)| . 

expj-jkKn, • xJT + Cn, .y)y + (n, . i)i\ . 

The quantities x and Z represent the coordinates of the origin of the local coordinate 
system. The original polarization of the wave has been broken up into three compo- 
nents in the local coordinate system. The above dot products can be easily calculated 
from results already derived: 

x • j = - Zy I>0™«* Ö 

y -j  =  I 

Z  .J  -  -i-. 

10 



Since y • J =  1, and this is the magnitude of the original transmitted field vector, the 
effects of the x • j and the z •] components are neglected. This should be a very 
good approximation for small Z    which'must be the case in order for the tangent-plane 
method to be applicable to the smoothly undulating surface. The quantities n", • x> 
n, • y , and   n", • i are easily computed from the previous work: 

n, • x = sin 0 - Zx cos d 

"i   'Y = [Z  cosfl sin 9 - Z costf 8infl)/(8inÖ - ZxtosS) = 0 

n,   -i' = -cosfl - Z  sinfl 

The local angle of incidence (6) can be related to angle 6 by the following expressions: 

cosfl' * cosfl + Z  sind 

sinö' * sind - Zx coaß 

Using the expressions abo\e for the local angle of incidence, the local incident field can 
be written as 

Ej * y exp |-jkfasinfl - Zco8fl)| exp |-jk(x8infl'-f co8fl')| . 

The problem locally is n JW one of a horizontally polarized plane wave incident onto a 
slightly rough dielectric surface. This problem has been solved previously by Rice* and 
Fung.9  The fields up to first order in perturbation, as expressed by Fung in the Fourier 
transform notation, will be the form used here: 

oo ee 

E-  = C exp(-jkx sinfl)   exp(jkz co8ö)+Rj^exp^jkz cosfl) 

oo   oo 

-/T(k;+klk;)Q,TO»dk,dky|EXP 
-OO -OO * 

•s. O. Kice. 
'A. K. FUI«. -Hiiimilnir...." 

II 

1 

1 



m 

(3) 

EXP 

0  = j^k"- ka)S(k, -Hcwn^ky) 
^^k^k^XkJ+k^^k;) 

T   = 1 + R1 . 

R^    -    Fresnel reflection coefficient for a local horizontally polarized plane 
wave. 

EXP - exp[-jk(x8in«-Zco8»)I 

EXP = expljk^x +jkyy-jk1T) 

k. ^ y/k2'kl-K      whenka>k;+k; 

K = ■iy/K + K'ki    when k; + k' > k2 

k'. = s/k -K-K   when ^ >k»+ K 
k',     = -jy^+kj-k''     when kl +ky

1 >k'1 

S(k , k ) is the Fourier transform of the sli^itly rough surface function 
8(x, y) with 1.^, k    a« the Fourier variables: 

*/7 s(k.»ky)= ^r 118(^y)«xp(-Jk,x-Jkyy)dydx • 

It should be noticed that the k^ argument in S(kii,ky) has been replaced by ki + 
k .sin Ö in ()'. The angle ß' represents the l<»ral angle of incidence and is the angle be- 
tween ihr unit vectors z and -n, . The Fresnel reflection coefficient  Rj^ is in terms of 
the local coordinate system and can be written as follows: 

kcosfl'- /k^k'sin2»' 
^kcosfl'^-k^nV 
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In place of cos 9* and ainff', the following expressions are used: 

CO8 0 *  cos0 + Zg sintf 

sinfl' * sin 9 - Zj cos* . 

The present form of R^ would make future calculations very difficult due to the Z 
in the radical and in the denominator. It would be advantageous to approximate R^ 
with the first two terms of a Taylor series expansion about Z^ = 0 since small slopes 
are assumed. When this is done, R^ can be written as 

kcos« -  /k'-k'sin2« 

g    =-2kRo sintf/k'cos^ 

cos* = yF-k'smWk' 

Tli«' angle 0 would be the angle of refraction if the surface were flat, e.g., p(x, y) = 0. 
The angle 0 is then related to the angle of incidence 0  by Snell's Law. The magnetic 
fields associated with the electric fields given by equation (3) can be computed from 
Maxwell's equation written in the local coordinate system: 

TJH-   r= < exp(-jkT8in9)|exp(jkz costf) - R^exp(-jkzco80)| • cosO' 
oo   oo 

EXP 

dk     EXP 

IJHJ   =< sintf'exp^jkTsin^lexp^kycosfl^ + R^expf-jkz co«*')j 

13 



At the surface, where the fields must be evaluated, the x and y coordinates are zero 
and 7 * s(x,y). The term Q' can also be mitten as 

Q,= (l + R0+gZ],)QS(kK+ksinfl'.ky) 

j(k'2-ka) 
with    Q =  il—, i    . 

2»(kI+k'i)(kJ+lS|
a + kiki) 

Hie fields evaluated on the surface then become 

exp(-jkl8)dkiidky + 

%Z*JJ ^kK<?SexP (-JM)dK dk VEXP 

| .00   .oe 
00   00 

^yy^kK<?sexPH,s8)dKdkyl 
~ae "^ 1 

E-  = < exp(jk8co80) +Ro exp(-jk8co80)-f gZ](exp(-jk8co89) 

so   00 

.00 .00 

- gZ. // (K +Kk;)QSexp(-jkx8)dk]idkyjEXP 

E,  = - jd +Ro)y</kyk
,
lQSexp(.jkl8)dki(dky + 

&tJJ ^k.QSexpH^dk^lEXP 
-00 .00 J 

till- = < CO80 expOkscosff)-*-Z^sintf exp(jk8co89)-Roco80 exp(-jk8co80) 

- g'AxvoH0 exp(-jk8co89)-RoZ|i8in0 exp(-jk8roH0) 
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* m mo 

""F = I (»+^>//nr(k« - igQSexpHk^dk, dk^ 

+ gzfj ^(kt-fyQSexpi.jk^dk.dk, IEXP 

EXP 

i?IL   = < 8in0exp(jk8co89) - Zx CO80 exp(jk8co80) + Rosind exp(-jk8co80) 

- R   ZJJ cosfl exp(-jk8co80) + gZi| sinö exp(-jk8co80) 

+ (1+Ro)// I k L-i-0Sexp(-jki8)dkiidky 
-oo .00 

ffk(k\ +k' + kk') > 
+ *Z*JJ    ~^~k !-i-QSexp(.jkt8)dkxdky|EXP   .        (4) 

-OO -oo 

The parameter S(kx +ksinö;ky) has been written without its arguments. The j com- 
ponent of equation (2) for E   together with the above equations for the surface fields 
can be used to calculate EHH , the like-polarized backscattered field for a horizontally 
polarized incident wave. KHH   in terms of the surface field components is, from equa- 
tion (2): 

k""   = KJJ l^h^o00*0-** co*0 • ^ "yco8* + ^"i 

+ ijlly Zy D0 cos« + nHy «x + sin« py t^ 

- .in* pt t^.) exp^jkn, «r^ly dx . 
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When the surface field equations (4) are placed in the above expression for EHH, the 
following equation results: 

EHH= -2R0KJJ (cosÄ+g^sinfl) exp^jkn, . r) EXPexp(-jksco89)dydx 

+  IHH 

_ .    2k co89 
* " k cos 0 

«HH = KJJjJ{A + BZ*+C** +DZ
y
+E8

y  }sexp(-jklS)EXPexp(-jknI.r) 

dydxdk^dky 

[k (k2 + k k')      k2 k 1 

'k   '     •'"TiJ 

B = gco8g(k')t+klkt)Q^[ - 'k     +irL\Q 

[k (k2   + ki + k   k' )1 
'    '     ? !-L]Q + (I + R0) «infl (k> + ^k ) Q 

I) = (I +Ro) kykxQc8cflco82fl + c«cöco8fl(l + R0)|-
J!j^i(kI -k^)j Q 

+ (1+K9)ün9kfkm<} 

E = (I + Ro)co«« kyk'iQ +(I+1^)81110^9   • 

In the .ibove calculations, the term D    v/t» approximated by the first term of it» Taylor 
serifs <-\|Kirision around /x - 0.     The reason more terms of the series are not taken is 
that higher order slope terms would result in lHH  and these are assumed negligible. 
Tlii.- results in the following approximation for I) : 

I)     •   C8C( o 
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Uli« approximation will be poor at very small angles of incidence but should be accept- 
able over a large range of incidence angles, particularly when the slopes are not large. 
The range vector r is 

f = ix + Jy +kp(x,y) = ix+jy + k(Z + s). 

Using the above expression for the range vector, the backscattered field EHH becomes 

EHH=-K// [a,+^2^1 exp(-2jkx»in« + 2jkZco8fl)dydx + lt ■HH 

xainO 

a, = 2Ro coaB        b, = 2Rogo sinfl 

IHH = K/// / / A + BZ, + Cs, + DZy + Esy| S expCJas) exp(-2jk 

+ 2jkZcosö)dydxdk)|dky 

a = k coed - kf . 

It is interesting to see that EHH   consists of the sum of two basic terms the firrt of which 
depends solely on the large surface undulations Z(x,y) to which the tangent plane 
method applies and represents the quasi-specular component of the scattered field. The 
term IHH arises because of the small surface perturbations s(x,y); although it also con- 
tains terms dependent upon the large surface undulations. In calculating EHH E^ , it 
will be assumed that the two terms are independent «o that cross-product terms would 
produce a negligible effect upon the final result: 

^H^ = KK*////{a? + a.b.Z, + a. b. Z^ b1, Z. Z; } . 

exp i- 2jk sin» (x - x) + 2jk cos« (Z - Z)l dydxdy' dx 

+ 1      I* 'HH 1HH 

In order to compute <EHHE*H> , a two-dimensional distribution must be assumed for 
both Z(x,y) and s(x,y). The distributions to be used for both surfaces will be gaussian 
with zero means. The variance of the large undulations Z(x,y) will be designated a7 . 
The variance of the slightly rough surface 8(x,y) is given the symbol o j . With a two- 
dimensional gaussian distribution, not only must the mean and variance be known but 
the normalized autocorrelation function of the surfaces, called the autocorrelation coef- 
ficient, must be given a particular form. The symbol for the autocorrelation coefficient 
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for the large undulations will be C(r) and (hat for the slightly rough surface, Cl(r). The 
form of C(r) will be that suggested by Fung:10 

x-x ■u = r8ina 

y - y ■ v = r cos a 

It can be seen that C(r) is a two-parameter correlation function, and when G is zero an 
exponential function results. The quantities L and G are physically significant in that 
they combine to give a measure of the distance between hills or valleys on the surface. 
With a large L or G, the distance between hills will be large. When G is small, G(r) 
will be essentially exponential except near the origin, and this will result in a physically 
realizable surface with the variance of the surface slopes o* being 

er/ =-a2C"(0)=-?f-    . 
L G 

The primes represent derivatives with respect to r . The form of C, (r) will be assumed 
gaussian and can be written as 

C1(r) = e-'V  . 

The parameter I is the correlation distance. The following averages are computed in Ap- 
pendix B and are needed to calculate <EHH ^HH^ - 

<exp|2jkco«ff (Z-Z')l> = expl-K.O-C)! 

<Z)iexpI2jk costf (Z - Z))> = <Z'i| exp|2jk cos« (Z - Z')J> 

= -j2ko2 cos« l^expl-K.O -C)| 

<ZiiZ'iiexp(2jkcosMZ-Z))> = .oJ|-^+K1 (0j   expI-K.d-C)) 

10 A. K. Fin«. Conctpondencc lo author. November 9,1970. 
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- 

K, = 4kVco82fl . 

The correlation coefficient has been written without it.s(u,v) arguments. Placing the aver- 
ages in the integral results in the following: 

<E„„EHV = KK» 

>        du 

+ <*HH lHH> 

f/U -4i-.b. kf cose ^ du 

exp(-2jku8in0)exp|-K|(l-C)] dudv 

It will be easier to evaluate the above integral if the coordinates are changed from the 
rectangular(u,v) to the polar (r,a).    Realizing that the Jacobian is equal to • r, the ex- 
pression for <EHHE*H> now becomes: 

<EHHEHH •H> = KK*// iaj - ^a, b, ko2 coeJ ~ sina 

^\Urexp(-2jkr8ina8in0)exp|-K|(l - C)] drda tf1o
2fiT1+ K.sin2 

1       dr ' 

+  <,HHIH#H> 

When K1>> I, a very rough surface results, and it can be seen that the main contribu- 
tion to the integral in r comes only from the region about r = 0 . The limits on r can 
then be made from zero to infinity. The limits on the integral in a will be from zero to 
2n . The correlation function C(r) can be approximated by taking the first two non- 
zero terms of its Taylor series expansion about r = 0 . C(r) then becom«*« 

C(r) *  I 
I/G 

or 

C(u,v) *   I - u   •<- V 

Taking the indicated partial derivatives of C(u,v) with respect lo u yields the follow- 
ing expression for < EHH E^ > : 
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o   o    K 

<EmEÄl> = KK»|/   << + 8j«1b1kco.<»    LiG |/c 

16b2.a4kaco8aflr,Mn,al f-icy 
IV^ J Jpxp (-2jkr sin« sina) exp   , r^, I r dr da 

+ <IHHJH#H> 

In order to perform the integration in a, the following integrals are needed (see Appen- 
dix C): 

f" I    exp (-2jkr sinfl sina) do = 2ir Jo(2kr sind) 
o 

,2ff f 
j     sina exp(-2jkr8int/ sina) da = -j2ir J, (2kr sinO) 

o 

/, /jI(2kr8inO) \ 
sin a exp(-2jkr sind sina) da = 2ir C —jr—r-z— - Jj(2kr8in0) l 

The J functions represent Bessel functions of the first kind: 

16 jr a, I. k cosö o2 rj. (2kr »in 6) 
<EHHEH#H> ^ KK-y l2w.;j0(2krsinfl)+  ^ jT^  

^b2. a2 32»b; a4k2 cos2fl r2 f J, (2kr sinfl) 
+ -£T^—J0(2krsinfl)- ^p^T [   2krsin0 

- J2(2krsin0)j|exp[.^~]rdr + <!„„!•„> 

The integration in r can be carried out with the aid of the following integral: 

The following expression is then obtained for <EHH ^HH^ 
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<E„„E5„> = KK^ {^ 
G      8ira2L]Gilblk

2an9cos9 
- +  -i-A  

4frL Gb.o k sin 0 I 
exp (- k1 L* G J in'ff/K, !+<!„„ IH

#
H >   . 

The quasi-specular term has been determined. The component <IHH 'HH ^ mug* now ^e 

calculated to complete the result. FVom previous work, an expression for lHH I *H can 
be written 

'HH'HH ~ KK 
■////////("•• 

AB^Z', t AC#s; + AD#Zy 

+ AEV + BA#Z. + BB#Z. Z. + BC*Z. s. + BD*Z. Z. + BE#Z. al 8. '*   y     "" ~»   y 

+ (:A#^ +CB#^Z|l + CC#^^ + CD*81|Zy +CE#8]i8y 

+ I)A%+DB»Z¥Z'  +DC«Z s' +DD#Z Z   + DE#Z s' 
r i» y» y   y y y 

+ EA»8y + EB«8y Z, + EC»8y 8^' + ED» ^ Zy + EE»^8y I     . 

SS# exp (jas - ja#s') exp/- 2jk 8infl(x - x) + 2jk co8tf(Z - Z)l . 

dydxdy'dx'dk, dky dk, dky   . 

In order to calculate <\HH IHH -> < '• '8 necessary to use the following averages which are 
computed in Appendix B: 

<ZxZy exp |2jk co8«(Z - Z)|> = <Zj|Zy exp (2jk oosff (Z - Z)I> 

1^157     Ki \bul\dvl\ expl-K.d-C)) 

<SS» expOa« - jaV)> * 2^6 (k, - k,) 6 (ky - ky ) o
2 V(k% + k sin*, ky) 

.exp/^ajla2
+a»2-2aa»(;i|l 

<exp (2jk oosfl (Z - Z)I> = exp (-K, (I - C)| 
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<ZJ| exp I2jk cose (Z - Z:)\> = <ZK exp I2jk co»e (Z - Z))> 

= .j2kaaco8* ^expI-K.d-C)) 

<Zy exp(2jk co6$ (Z -1)]> = <ty exp I2jk co8fl(Z - Z)|> 

= .j2ka2co8ö(^exp(-K1(I-C)I 

<^SS»exp(ja«-jaV)>* -ja'a,4 ^ 2»6 (k, -k,)«^ - 1^) 

. W(k|i +k8infl,ky)exp J-loj1 (a2 + a»2 .2M*C|)I 

<8;SS» exp(ja8 - jaV)> - - jao* -^ 2fr6 (k^ - k, )6 (ky - ky) 

. WCk, + k sinfl. ky) exp|- ^ a,2 (a2 + a«2 - iaan:, )l 

<8ySS«exp(ja8.ja»8')> * . ja^a,4   -^ lth{\ - kjfi (1^ -1^) 

• WCk, +k«in9,ky)exp|- ^ aj  I«' + a'2 --'aa'Cjl 

<81(8];sS#exp(jaB-jaV)>* -2*0^6 (k -kJMk' - k ) W (k   +ksinÖ,kv) y y ^ >     „ -•■■-.  "y 

2 

(TT1 +o;aa#(i!r)jf,xp|'To;'a 

+ a*' - 2aan:i | 

(^ *K. (t)) <ZyZyexp|2jkro^(Z.Z)|>  - "<^T   + Ki ^-äTJ > «-"P 1^, (» " (:)l 

4     d(:, 
<8ySS»Pxp0a«-jaV)> *  -j2)ra4 a -^ «(k, - k, )6(ky - ky) 

. W (k^ + k sin», ky) exp/ - y a\ \*   + ■•' - 2aa#(;i 11 

<^ »; SS* ^xpOa« - ja»H') >* - 2ir6 (k,, - k,) 6 (ky - ky )o; • V{\ * k sinÖ,k% ) [—- 
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->'(s§)I^(-i''?",+-"-2-c
1
1} 

+ff?M# (IT) 1 exp|- i"? t*'+-#2 - 2M#C. i| • 

W(k]|,k ) is the roughness spectrum of 8(x,y) and is equal to the two-dimensional Fourier 
transform of Cj (u,v) • Usinr» the form of C, (u,v) previously given, W(k]| + k sinfi, k ) = 

•T- exp C - ((k^ + k sine 12 + k2 )T" / • ^hen 'he above averages are used in computing 

<IHH IH*M> «nd the integration is carried out in k^  and k'  , the delta functions will 
become one. Placing the expression given previously for C, (u,v) and C(u,v) in the aver- 
ages and changing the integral to polar coordinates results in 

<IHH,HH> _KK JJJJ \ 2« a] A A* + (A»B + B*A) 8ir jk cosfl a2 * ""l* ^ 

:/Ar"«    L kmr> m\ *   4* r sin«      -r'/l2   . / + j(AC#a + A#Ca»)(;1  p   e r/r+(A#D + AD#) . 

jHk coaO a   r coso ir a 

{JG 

^I" 
+ (AE'a + A^Ea^)]^ -*—, +  \jG 

- l6>r(B(:aa + B^Ca«) k cos» a7 

o'rcosoe"^1   W^BB*      Birajo'BB*^ r'sin2 a 

iTH1" 
j   . j    4   -r r   »in  oa, P 

Vl2 

iToT 

J    2 Hno o^B^I) + BI)*)K1 r%in aroKa 

(77? l6«o'a  (BK#a+B#Ka#) 

kcosOr HinaroHae 
iToi1  
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>/■< ■       *  *  *  • « -r /I kcoada r ginacosa^c 

4ffa, a DD* (CE# + C#E)8ira, r sina cosae 4»a, a 

 P '"ITG 

8ffa, c DD^'K.r cos a Ibno.t co» ako co»8e 

L*G> (DE#-+D^        riTc  

4» EE^a* e'^1       8ff EE'a* rJ cos,«e"r,/,,l 
+ pr   "-j /WC^+ksinff.ky). 

• exp{. i a,2 (a1 + a*1)} |l + a,2 aa-C.I exp (- K, r'/l^Gj1 • 

«■xp (-2jkr sinO wina) . rdk  dk drda   . 
*      y 

In the above expression, the term exp (o, aa#C1) has been replaced with  I + a|M
#C  . 

The final form of <IHHIHH> must be left as a double integral in k,  and k   . Integra- 
tions can be performed in a and r as with the quasi-specular term. In order to do this, 
a frw more integrals must be specified: 
/in 

cosa exp(-j2krsin0 Hina)da = 0 

o 

/ 
cosasina exp(-j2kr 8in0 sina) da = Ü 

2ir 

/- 

t . .rt.     •       •       . 2irJ,(2krsinfl) 
cos a exp(-j2krt<in0 sina)da =  1  KVJ 2krsin0 

The integration in r can be carried out using the same Hessel function integral that was 
used earlier to evaluate the quasi-specular term. When the integration is carried out in 
« and r, the following equation results for <IHHI|JH

> : 

Of   OB 

<t     ..   s  -    ^a»^. /TfAA^Gexpl-k'^sin^G/KJ 
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2kVGa «Mfl «ine (AB# +A#B)exp f-k'l'Gän'l/lLj 

K.1 

a] k sin* (AC*a + A#Ca#) exp ^life^ 
IL'G    I'J 

2L>Gg1 BB^k' nin'g expj-k'L'Gwn^/K,] 
+ ^ + 

2(BC#« + B^Ca^kcostfo7a'exp I -k'«in2fl/[-pp- + -7]] 

^BG^a + B^Ca^k^osflMin'öo'a'fxpf-k'sin'yl-Y^ + -^II 

a'CC'L'GI1 

(K,!1+ 1*0) MT   "XP 
sin 0 r-k  *ing    1    f.,    v 21. G'k2«! 

2(DE*a + D*Ea*)o| o kcofltfexpl -k sin ff 

' I'L'Gf^.lf 
ll%     i?J 

-(•''■'••/Ire lü) o.aa»AA# 



2(AB# + A#B)a«#a*aVc<Mtf sinff expl - kJ sin1» 

"fö-rf 

k^feül 

aa^BB-aJo^'Gl' 2k,8in,0K1l
41 

(I^I^L'G) 

(K.l1+ L1G) _N_ +X J l ' 
ll/G      I'J 

dk.d^ 

Terms containing a*  have been dropped. In order to obtain a numerical result for a° 

as a function of 0, the double integral in <
'HH'HH'

>
 must be evaluated numerically. 

b. Depolarized Term. Attention is now directed to the derivation of the depolar- 
ized scattering coefficient o° v . The basic expression needed to compute o^v is 

lim 
4»Ra<EHVE^> 

HV R E.E; 

The objective now is to calculate the quantity <EHVEtJ,v>  . The i  and k components 
from equation (2) form EHV : 

2. 
OH   0 EHV = - K / / < Iv. + F' Z cac$ vonO + », Ej - t?ll_ Z cacf c 

- tjHjf Z sinö - tjHjWySinfl +TjH_rofcö + TJM- Z^sinff 

+ TJH_ s^sinfl + Tjllj^rosfl^exp (-jk nj •f)dydx . 

Placing the surface fields from equations (4) into the above expression for KHV   results 
in the following equation: 
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EHV = -K / / |«3Zy +b2ey|exp(-2jlcx8in» + 2jkZco8tfJdydx + lHV 

where: a, = 2R  csctf cos«; b   = 2R sind cose 
2 o 2 o 

'HV   =   KJJJj { A  + B Zx +C8x + ÜXy + £ 8y} S exP(JM) exP I*^" «n ö 

+ 2jkZco80|dk)(dkydydx 

k k 
A'= - Q(l + RJ ky kx - 0(1 + R0) cos*-*—x (k, - k',) 

k k kk 
tf«-Oik,k1-Q|co^-Jjp(ki-ki)-00 +«•)•«» -j—^-k'.) 

C'= Q(i+Ro)kykl-Q(l+R0)8inö -pc^-k,) 

[k (1^ +kk') 
_£_»—±J- 

k 

kjk',] fkXfW     k,yk'i 

\K(K+ KK)    kv2 k'.l fk (k;+ KV+ kJ kx 1 coif 

It should be noted that  lHV  has been wrfttrn in the same form a» lHH and that only the 
definitions of the coefficient» of the slope terms are different: 

EHV^V = kK:///7{^+aAVy+^MA *»»;%•;} 

.exp|- 2jksinö(x- x) + 2jkrosö(Z - Z')| dydxdy'ilx'+ lHVl 

In order to compute <EHV ^HV-5* < a ^'w mort' averages are needed: 

<ZyZy exp(2jk cosO(Z - Z))> = -a2 ||^-+  K, (£f\ Jexp|- K.d - C)} 

*»T 



<»y> = <»;> = o 

<    >    «i^ 

Using the above averages, the equation for C, (u,v) and the approximate equation for 
C(u,v), the expression for <EHVEH*,> becomes 

^HV^HV 

. a a, a     a    -r /I  1 40, r h, oos ae l 

3/|J 
4v    a a  a       a « »u2  -•" /' 4K. a r a. cos a      2a, b, e 

LV 
^-^ 

exp(-2jkr sintf sino) «•xp(-K| (I -C)] rdrdo 

+ <»HvVv>   • 

The chsnge from rectangular coordinate« (u,v) to polar coordinates (r,a) has been made 
in the integral. The integrations in a and r can be carried out easily hy use of the pre- 
viously defined integrals and the approximate expression for C(r). When these integra- 
tions are performed, the final expression for <EHV E*v> is 

<EHV^V> 
2jrKK»^ffi,K1L

JGIJ 

(K/.LV     
exp - k sin I 

+ <i HV'HV> 

The equation for  <IHVIHV>   W'" ^ ^r same as that for  <IMH'HH
>   except that 

A, B, C, I), E will be replaced by   A', B', C, 1)', E,     respectively,   it is interesting to 
see that, although the depolarized scattering coefficient does depend on the large sur- 
face undulations, if a,  = 0 ,   the scattering coefficient goes to zero also.   A discus- 
sion of the results and their meaning will ite given in a later section of the report. 

5.     Vertical Polarization. 

a.      Like-Polarized Term. Consider now a vertically polarized plane wave of 
unit amplitude with a time harmonic exp(ju)t) incident upon the composite rough sur- 
face />(x,y) = Z(x,y) + s(x,y). The surface is again assumed to be a dielectric with a 
gaussian distribution of surface heights. It will be required to derive expressions for 
c^v , the like-polarized backscatter coefficient, and a'^H , the depolarized backscatter 
coefficient. In order to do this, expressions must be derived for Evv ^Eyy '''yV> , 
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Eyx, and <EVH E *^ > , the fields and mean power densities of the like-polarised and 
depolarized returns. Then, o°v  and o^ can be determined by the following: 

o        lim     4irR,<EwEvv> 
^   ' »-    p?  

o    _ lim     4irRa<EVHE»|> 
"VH   ~  R-o.     — w 

For a vertically polarized wave, the incident electric field vector is written as 

E( = -(ico8d + kHine)rxp |-jk(x.siiiö -zcosö) J . 

From Maxwell's equation, the incident magnetic field is 

ü      jexp {-jk(xsin0-zco80)| 
Hi = ' ri L 

where T? is the intrinsic impedence of free space. For vertical polarization, it will be 
easier to work with the magnetic field vector rather than the electric field vector. The 
locally incident magnetic field vector II, can be written in terms of the local coordi- 
nates (T, y,T) in the same manner as the incident electric vector was written in terms 
of local coordinates for horizontal polarization: 

H|=-i|x(x. j ) + y(y ■ j)+2(z • j))exp|-jk(x sinfl - Zco80)| 

•expZ-jkln, .x)x+(n| • y)y + (n, -z)!!!. 

The above vector dot products have been determined previously and are here repeated 
for convenience: 

x • j = - Zy Ü0 cos« 

y .j =  1 

z    j = -Zy  . 

Once again, since J   ' y =  1 the effects of the x  • j  and z • j components will be 
neglected. Using the quantities n, • x, ri, • y, and ri, -z as computed previously, the 
local incident magnetic field vector can be written as 
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Hl * jL ycxp/-jk(x8inff - Zco8Ö)lexp/-jk(x8inö'-zco8ö')l. 

The problem locally near the surface is that of a vertically polarized wave incident onto 
a slightly rough dielectric surface with an angle of incidence equal to 0' . This problem 
is worked in Appendix A, and the results there are restated here in the local coordinate sys- 
tem. The fields are correct up to first-order terms: 

"x=    |     ffK(K^^^dkydKj EXP 

H-  = < oxp(-jkx sinO ) (expOkz cutsö) J  Rn exp(-jklco8fl')) 

MM 

+>//GT1(k..ky)OT'dk.dkr}EXP 

H? =   { //VwEXPdMk,} 

h si{jJ ^F«os.^)*k.G„(k..Mra'dklldk, 

} 
.} 

- exp(-jkx 8ind')|kro80'exp(jklco80') - kRii co8d'exp(-jklco80)) 1 EXP 

V-i lk.l,.i<k,k,>*k.K.i<k..ky>l EX,,,"l.dk,f E"1' 

■-(■ 
E^ =-j- € -k8inflexp(-jkx 8infl')(exp(jkzco80') + R. exp(-jki co»fl')| 

+// Ck1|Gfl(k)|,ky).kFDI1(k„k,)irodk.dkyj EXP 

EXP= exp(+jkEx+jkyy-jktXl 
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■ 

EXP = 1 exp (-jk(x sine - Z cosO)] 

D.A.M ■ B°'""A",,, 
a
ii St' *iJaai 

A„ «„ - Brt a,, 

fii<k«'S> j^  

AB=-9k,IV
,kiQI -»jk.k'k^Q, .W.k^kk*-Vk^kk" 

Bo =kik;kk'8S0 - flk'k.k^k.Q, 

So = }kyS{kK + k 8.n<?', ky ^TH «nfl'(k2 - k" ^irk" 

V   = -jT||fjk8inV(ka -k'a)S(kll +k8in9;ky)/2jrk'J 

Wo=j(ki| +k8inö)»7T||8mö'(k,-^^»(k, + k 8inö', ky^irk"* 

Q, = jCk* - k^KI - R,,) co^'^k,, + k «nfl, ky)/2»rk 

a11 = TJk;kIk', +1,^X^+1?^^, +nkak;,ki 

*2i=''k'\k'tky+T,k7KKkt 

n^^nk" kX +„k'\,k; + uk'^k;1+nk,k;ki, 

where R.. is the local Fresnel reflection coefficient for a vertically polarized wave. The 
quantity ^ u equal to I + R... The form of R. is as follow 

k  co80' - k^ k    - k  sin 0 

k  coad + kyk    - k sin 0 
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em0' m und - Z% cosfl 

cosfl' * costf + Zx sin ö 

In order to obtain a workable expression for R.., it will be necessary to approximate R., 
by the first two terms of its Taylor series expansion in Zx, about Z|| = 0. When this 
is done, R.. becomes 

_ k'cos 9 - k^/K   - k' sin* g 

';,'k'Jco8Ö+k>/k,,.k,8in,ö 

2k,Ikging(k,a-k'> 
^"-k'sin'e |k'2co6fl +kyk"-k1sin,9 [ 

At the surface where the fields are to be computed, x = 0, y = 0, and z = 8(x,y). It is 
also necessary to write D,,, G   , and Fs|  in terms of slopes so as to make a manageable 
solution later on: 

Dsl(k]l,ky) = jc, (d, + d, ZJS (k, + k8ine',ky) 

GyI(kl|tkf) = jcI(|14.g1Zm)S(k,+ktin»;ky) 

F« (k,\) = jc, (f, + f2 Z,) S (kK + k sin»',ky) 

ci = Ki««-«!*1»!'1 

d
i  = ■ii^^o-,,2ias 

da= ■n^fli "Si*. 
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«, = (l-r0)(a3+at) + a$(l + ro)(kJt8inö+k8inafl) *-«4(l+ro) 

«H, = -o.r; +«, (1 - r0) - a3T0 + a4(l - r0) - a, (1 + r0)(2kMnflco«fl + k^osff) 

+ «5ro <k« *n$ + krin8«) + 0^; +0,(1 + r0) 

^„ = Ml+OMnfl-k.d-rJcos* 

^ = k;r^8infl-k;(l+r0)coflfl-ks(l.r0)8infl + kxr;co«fl 

k^Mk'-k") 
** = 2^  

a, = -ijkjkk^k'-k'^costf^ir 

o2= -tjkkJk^k'-k'Vinö^ir 

a3^ .r,ktkk'*(k* -k'2)coae/2n 

a4 = -ijk.kk^k'-k")«!!«^» 

o, = -tj^k^Mk -k'2)/2ff 

o6 =    uk^k'sin'Mk'-k'V2«r 

a, -■ - 2IJ kf k^ ka sin Ö cosfl (k1 - k'2 )/2ir    . 

In deriving the above expressions, terms containing Z", Z1 etc., have been neglected. 
The electric and magnetic fields evaluated on the surface become: 

Hj =| JJ DJllexp(-jkls)dkMdky|EXP 
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Hy = |exp(jk8 corf) + (r0 + r^Z,) exp(-jlM cone) +JJ GylexpC-jk^) 

dk.dkylEXP 

^        oo   oo 

>-•• -oo 

- kZjj sine (exp(jk8 cosö) - (r0 + r^Z^) exp (-jks cosfl)) 

-k cose exp(jk8co80) + k oo8fl (r0 + röZ|t)exp(-jk«co»ff) > EXP 

%sJl\JJ (k'ü«' +K¥u)**p(-K*)äK'iKj EXP 

H^  = ^- <-k(8in0 • Z||co80)(exp(ik8co80)-*-(ro+r'oZx)exp(-jk8co80)| 

00   oo 

+ JJ (KGyi -M.i)<xPHMdk.A} EXP • 
-oo _oo ' 

(5) 

The (i rose + ksinö) term in equation (2) will now form the like-polarized backncattcred 
field when the incident wave is vertically polarized. Using this term from equation (2) and 
the above-defined surface fields, we can obtain an expression for the like-polarized back- 
scattered field Evv: 

Evv = - K / / (a', + b,' Zt | exp|- 2jkx sine + 2jkz cosd> dydx + Ivv 

aj = 2r0 cosö     b' = 2ro sin 9 + 2r„ cosö 
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lyysKffff{\ +B.Z. +c^ ^D.Z, +E,., }sexpö«) 

• exp <-2jkx Bind * 2jkZ cosöldk^ dky dydx 

S = S(k  +k«intf',k.)     « = kco«tf-k 

^=TL{krf.+k.8.+8.kco•4 

Bi =:r" {kyfa+k«8a + 83
kc08Ö+«ik8in<'} 

D.=ira{M.+k.f.)c^+kd.} 

E, =-jcI | tl cose - d, sine >   . 

Use has been made of the derived forms of ÜxJ, G   , and Ft| . It can easily be seen 
that Evv  consists of two terms the first of which depends solely on the large undula- 
tions and represents the quasi-specular component. The second term lvv , although it 
depends on the large undulations through two slope terms and a phase term, arises be- 
cause of the slightly rough surface s(x,y). The form of Evv  is now the same as that for 
EHH , the only difference being in the definitions of the coefficients on the slope terms. 
An expression for < Evv E •v>   can then be written directly without further work: 

<EVVE^> = KK» 
{» a,1 La G       8» a I^Ga', h' k* sin 0 cosfl 

-^ ^ 

4ifL,Gh'aff
Jkasin,ff \ (   * *        *       \ 

+ ^  a * »no i   ^ J.^^GsinVK,! +<IVVI^V> 

Tlie equation for <lvv 1 •v> will be the same as that for <1HH I •H> except that A, 
B, C, D, and E will be replaced by A,, B,, C,, D,, and E,  respectively. Once again, it 
can be seen that <IVVI*V> will disappear when a, = 0 leaving only the quasi-specular 
term. 
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h.     DepobriMd Term. The depolarized scattering coefficient for a vertically 
polarized incident wave is (^ . The objective now is to obtain an expression for 
<EVH Ey||> .  The j component of equation (2) will give a basic equation for EVH 

in terms of the surface fields: 

By,, = K / /  I Ei Zy üsc0 cosa* - Ey cos» - Ej ^ cos0 + IJHJ 

+ ijHy Zyctce cosfl + 17HJ ^ + EjZy sinö + 8y E; sinö 

- E^Z^sinff - 8x E-8infl/exp(-jkn1 -^dydx 

The previously stated surface fields used in the above expression for EVH  results in 
the following equation: 

EVH =KJJ  |«',Zy +bJ8 lexp(-2jkxBine+2jkZ cosöj dydx + ly,, , 

where 

a^ = 2r0csc9 cosö   h'7 = 2r0 sinö cot$ 

IVH = ifjJJ  { ^i ^ BjZ, + €>. + O; Zy * E; ,y} S exp(j.s) 

• exp (- 2jkx sin 0 +2jkZ cos9 ] dk^ dky dydx 

B 

Jci = V- (k^, cos« + k^ f, cose + d, k) 

= X ((^dj+k.f^cosfl+d^ + C^d, +ksf1)8inffl 

= XJM,+k.f.)-in» + f,kl 

= re?Ikyf.+k.«.+k8.COfc^ 

= JY ((kyf|+kIg1)8inö-(kllg1-kydI)co8tfJ. 
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The depolarized expression consists of the sum of two terms, the first of which if depen- 
dent only upon the two y «lope terms. The term IVH is similar to expressions derived 
previously. The form of EVH can be seen to be the same as that for EHV so that an 
equation for < EVH E^H >  can be written down directly: 

<*niEÄi> = 
2irKK»bjaaJlCIL

1Gla 

(K^'+L'G)' 
exp k sm 9 

UG   T 

+ <IVHIÄ.> 

I# > is of the same form as <IHH I *„> except that A, B, C, The equation for <IV 

D, and E will be replaced with A',, Bj, Cj, D, and Ej . Again, the depolarized term öis- 
appears if o, = 0, although the expression is still a function of the large undulatirn 
parameters. 

6.     Consideration of Local Vertical Components. ?• h**:. tne incident fields were 
written in the form of local coordinate components, the effects of the x • j and z • j 
components were neglected. It is the purpose of this section of the report to calculate 
the changes that would occur in the resultant backso-itter coefficient if the local vertical 
terms are not ignored. The changes needed for an incident wave with horizontal polari- 
zation will be worked first. For a horizontally polarized incident wave, the incident field 
was given earlier and is repeated here for convenience: 

Ej = |x(x.j) + y(y •/) + £(£ .j)J exp |-jk(x8infl'-zoostf')l EXF 

EXP = exp[-jk(x8in0 -Zcosd)] 

x .j =-ZyD0C08Ö 

y    j ^ 1 

z • y = - Zy 

D   = (sinfl-Z.cosfl)"1 . 

The amplitude of the local vertical component can be computed from Maxwell's equa- 
tion written in local coordinates: 

— r,H\   • 

The problem is no* to compute the amplitude of the y component of Hi . This am- 
plitude will then be multiplied by each of the surface field components determined for 
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vertical polarization and then added to the surface field« already given by equation! (4) 
for horizontal polarization in order to obtain the new exprearions for the total field. 
The y component of H| will be written as Hj- and is computed to be 

H[? • -1  exp <-jk(xsinfl -Tcosfl) \ 

In this calculation the higher order slope terms have been ignored. The total fields on 
the surface can now be written in the form: 

^=E|-+EÄ Hj-H^H,; 

E?=E|T+E2I Hr'H,-^ 

The subscript 1 refers to the surface field determined by a local incident horizontally 
polarized wave, while the subscript 2 refers to the surface fields determined by a local 
incident vertically polarized wave. The surface fields due to a local incident vertically 
polarized wave can be determined by multiplying Z esc0/17 by the fields calculated in 
Appendix A and evaluating on the surface: 

Z cscfl/   f[ 
\ll <krF..+k.Gx.: E»   =^TH JJ   (k,F..+k.Gy.)exPHMdMky 

- kZgSinO (exp(jk8co80)-(r0 + r^ Z]|) exp (-jkscostf)] 

- k co80 expOkscosO) + k co80 (r0 + r'0 Z%) exp (- jkscosO) V EXP jkscosO)) 

^" 1 // (k,D", +k.F«)eilP<-ik.,)*.Ar| 

E,- = 
Z..C9C0| 

a7 =^ir-yjJ (k.G„.k,DI1)exp(.jk,a)dk,dk, 

- k(siiiö - Z(co80) |exp(jk8co80) + (r0 + r^Z^) exp (-jks co80)| »EXP 

4//D.,«P(^..)dWltdkl nHa; =Zyc8c0^  / /  D^exp^jk^dk^k^EXP 
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ijHay = Zy csc9 < exp'Jks co«tf) + (r0 + r^ Z,,) exp (-jk« co»$) 

* //Gyi MPHk.8) ^.^y } EXP 

a7 = Z
y ^4 y^ F., «p (-jk,») dk. dky I EXP 'jH,- = 

The above fields must be added to the fields given by equations (4) in order to obtain 
the total surface fields. The above equations are correction terms owing to the fact that 
local vertical polarization components exist. When the total surface fields are now sub- 
stituted into the expression for EHH, it is fouud that the quasi-specular term remains 
unchanged if high-order slope terms are still ignored. The only change in IHH  comes in 
a new definition of the D term. It can be shown that D now becomes 

D = cscflcos'flk^QO + Rj-H C08fl
k
C8cg (k.d, +k|tfl)cIj 

k k 
+ j^d, cscfl+cscflcosffO + I^) -^ (kf -k^)Q + 8infl(l +R0)kyk1|Q . 

Two more terms have been added to D . When the new total surface fields are placed 
in the expression for EHV , the definition of aJ  changes and the definition of I) 
changes as follows: 

D' = _ C8£l 0^ + k^ ^ _ cgce coae ^^ + cgcfl cogfl(1 + j^^ + ig^Q 

f k^k1,+kik'i)    k'k'l 

a2 =2c8CÖ co8fl(r0+R0) 

The term aJ  is not used in the final result« and, therefore, is not needed. The new defi- 
nition of the U term has two more terms added which come from local vertical polari- 
zation terms. 

A similar analysis to the above can be performed for the case of vertical polariza- 
tion. This time, the interest lies in determining the amplitude of the loml horizontal 
component. This can be done by using the following Maxwell equation: 
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7XH;=JW«0E;. 

In the above equation, Hj is the incident magnetic field written in local coordinates for 
a vertically polarized incident wave. The equation for (he y component of E|, Ej- , is 
then 

El
e=-Zf ace expA jk(x «i. tf'-I •»«tf') > EXP 

EXP = exp|-jk(x8ind-Zco89)>  . 

The equation« for the surface fields for horizontal polarization must be multiplied by 
the amplitude - Z csc0 and added to the surface fields given by equations (5) to ob- 
tain the total surface fields. When this is done, the total surface fields are then placed 
in the expressions for Evv and EVH to determine differences. With these changes, 
the definition of the D,  term v, hich is the coefficient of Z    in Ivv becomes 

D, = jc, I C08fl
k
c8cg (d, k, + f, k, ) + d, sinö + d.cos1 fl esc J 

k k 
+ ctceil+^k^Q'cacecoaeil + ^-Y1  (k.-k'jQ   . 

The term D,  is the only change that occurs in Evv. The definition of two terms changes 
in EVH . The terms are aj and üj: 

aj = 2c8cfl cosfl(re +1^) 

jc, , 
D, = -r- (ky f, sinfl + ^g, nn$ ■'■ g, k eseö cosfl ♦ k f, ctcO cos e 

+ k>g|cacf cos1«) -csctf cosfl(l + R0)(k' +kik'I)Q 

fk^k1 +kIk
,
i)      k^kl 

- cscfl 

The only effective difference in E      is in the D',   term since aj does not appear in 
the final result. 

This ends the analysis portion of the report, the next section discusses the results 
in terms of graphi of the backscatter coefficient versus incidence angle. 
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HL DISCUSSION 

7.     Evaluation of ReMilt«. The purpose of this section of the report is to describe 
numerical calculations and to show and discuss the resultant graphs of scattering coeffi- 
cient versus incidence angle. These graphs represent the final result of all derivations and 
are plotted for different surfaces, different soils, different moisture contents, and two 
different frequencies. The equations for <?m, a£v, a° v, and o^ involve double inte- 
grals in k^  and k    which cannot be solved easily by analytical techniques. It is neces- 
sary, therefore, to use a numerical integration routine in order to obtain final calcula- 
tions. A two-dimensional Simpson's rule was used to evaluate the double integrals. The 
question of limits of integration for the computer was determined by using the exponent 
term in W(k]| + k sin9, k ) . This exponent will decrease rapidly as kx and k    in- 
crease. If e~10 is assumed to be insignificant, then the limits of integration (k^,, k    ) 
will be 

k«.  = kr«  =  *2/5^ 

with e - if . A computer program was written in Fortran IV for the calculation of the 
backscatter coefficients. The program inputs are frequency, limits and number of in- 
tervals for integration, standard deviation of the large and small undulations, the corre- 
lation parameters, and dielectric constant of the surface. The output of the program is 
the four scattering coefficients in decibels for different angles of incidence. The func- 
tions needed for integration are formed in four separate function subprograms, while 
integration itself is performed in the main program. Careful examination of the equa- 
tions for the scattering coefficients shows that they are not a function of the absolute 
values of a or L but only their ratio. For all calculations, the value of a read into 
the program was left at 1.0 and the value of L was varied. This is not the case, how- 
ever, with the small surface perturbations as both o,   and I appear to have importance 
by themselves and so were varied individually in the program. It is not possible to eval- 
uate the scattering coefficients at Ö = 0° due to the cscfl  in the DD* terms of the 
double integral. The csc0 term came about because of the assumptions that were made 
in the derivations and these assumptions are invalid at 0 = 0° . Computations were 
started at   0 = 10°    and were performed in   10° increments up to 0 = 80°.   Cal- 
culations were also made for the case where   o   = 0   or when the surface is just 
a smoothly undulating one.   In this case, only the like-polarized scattering coeffi- 
cients have values as average power for the depolarized terms disappear.   These 
graphs allow a determination to be made of the effect of the small   surface per- 
turbations on the resultant backscatter.   Two different frequencies were used in 
the calculations:   9.375 GHz and 5.87 C Hz. For each separate frequency used, it 
was important to determine the validity of the very rough surface condition by evaluat- 
ing K, = 4k3a1cos10 and making sure that K, » i  . If a is held constant (a = 1) 
and K,   is evaluated at 0 = 80°, then only the lower frequency need be calculated as- 
suming it satisfies the condition K) » I: 
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K, = 1823 when f • 5.87 GHz, 0 = 80° 

It can be seen that the very rough surface condition is good for all calculations. When 
the frequency was changed, the parameters a,  and I were also changed so that ko. 
and kl remained constant. The dielectric constants used were taken from Lundien 
and represent soils with certain moisture contents and dry densities. The soil type, 
moisture content, and dry density of the soil are written on the curves along with the 
other data. The graphs which follow this section are labeled 1 through 30 with all ap- 
propriate data labeled on each one. Preceding the a" curves is a curve of the correla- 
tion function p(r). It can be seen that the correlation distance is larger than L. By far, 
the most important factor affecting the results, at least for like-polarized terms, is the 
ratio o/L. The effects of polarization are noticed more at large angles of incidence than 
at small angles. This agrees very well with the experimental results discussed by Beck- 
mann and Spizzichino.12 This would indicate that if surface discrimination is wanted by 
polarization variation, then it possibly should be done at large angles of incidence. 

The cause of depolarization is the slightly rough surface. Yet, if a slightly rough 
surface is taken by itself so that a = 0; then no depolarization results for backscatter- 
at least, for first-order perturbation terms. Also, the type of depolarization that results 
from the large undulations by themselves (o, = 0) depends on the sum of the two 
Fresnel reflection coefficients and does not appear in the final results. This is very in- 
teresting because the composite surface ends up with depolarized terms due to the fact 
that the local surface fields determined by the small perturbation technique are com- 
puted in a local coordinate system which is tilted with respect to the original coordi- 
nate system. This means that the depolarization results from a tilted, slightly rough 
surface. It can be seen from the graphs that the two depolarized terms are, in general, 
not equal over all angles. The cause of this could be either the result of the approxima- 
tions made in the solution or there really is a difference in the two terms. It is not 
possible at pre&ent to determine which case is correct. 

The effects of each individual parameter will be discussed briefly. The effect 
of differing moisture contents can be seen by examining curves 1 through 4 and curves 
5 through 8. The higher moisture content results in a higher dielectric constant which 
yields a little higher value of a"  for each angle of incidence and fur all four polariza- 
tions. Curves 9 through 12 are uf a different soil type, but care must be take» in com- 
paring these graphs with curves 1 through 4 because the moisture contents differ. If 
the difference in moisture contents could be taken out there probably would be very 
little difference in th^ two sets of graphs. The effect of changing the o/L ratio can be 

"j. K. Lundien, "Temin Arulyi» by Klectromapictic Metiu," Trchnicai Report No. 3493. Waterways Eiperiment 
SUtion, Vlckabur«. Mtaa. 

Beckmann and Spizzichino. 

42 



aeen by comparing curves 1 through 4 and curve« 13 through 16. This effect is particu- 
larly noticeable at intermediate angles for the I ike-polarized terms where the difference 
becomes very dramatic. The ratio a/L can be seen to affect the like-polarized terms 
much more than the depolarized terms. 

The influence of the correlation distance (I) of the slightly rough surface can 
be seen by comparing curves 1 through 4 with curves 17 through 20. Increasing the 
correlation distance I has the result of bringing the ou curves down at large angles of 
incidence. For the like-polarized terms, this effect becomes noticeable for 9 > 40°. 
In the depolarized case, the whole curve is lowered; but the differences still become 
greater at larger incidence angles. The influence of o  , the standard deviation of the 
slightly rough surface, can be seen by comparing curves 1 through 4 with curves 21 
through 24, and curves 25 and 26. This parameter has little effect on the like-polarized 
term until angles of incidence 0 > 40° are reached. The effect of o,   on the depolar- 
ized terms covers the entire range of incidence angles and the difference increases a 
little at large angles. All of the above comparisons have been made at the frequency 

of 9.375 GHz. It would not be reasonable to expect that exactly the same effects would 
occur at other frequencies. An idea of frequency differences can be obtained by com- 
paring curves I through 4 with curves 27 through 30. For all four polarizations, the 
X-band frequency give« a dighlly higher value of 0° for all angles of incidence. 

IV. CONCLUSIONS 

8. General. The following general conclusion» can be made from the anulysis and 
the graphs. 

a. A correct theory for explaining radar backscatter must c insider a compos- 
ite surface as has been demonstrated in this paper. 

b. Depolarization results from the effects of the tilted, slightly rough surface. 

9. Specific. The following specific conclusions can be made from the plotted data 
at the frequency 9.375 GHz. 

a. The ratio a/I, affeets the like-polarized terms much more than the de- 
polarized terms. 

b. An increase in the moisture content of a soil increases o"  slightly for all 
angles of incidence but does not significantly change the shape of a" versus 0 curve. 
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c. An increase in the correlation diitanoe for the slightly rough surface re- 
sults in a9 being less at high angles of incidence (0 > 40*) for like-polarized term. For 
the depolarised terms, 9° is less for all angles of incidence. 

d. An increase in o, , the standard deviation of the slightly rough surface un- 
dulations, results in a higher a" . In the case of the like-polarized terms, a higher a0 be- 
comes noticeable for $> 40*. In the case of the depolarized term, a higher a" is no- 
ticeable for all angles of incidence. 

e. It was shown from the graphs that the changes that occur in a0 due to a 
variation of parameter inputs is not large in many case*. This would indicate that if a 
radar is used for determining o0 for purposes of identification and discrimination then 
a very accurate calibration would be necessary. 
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APPENDIX A 

DERIVATION OF THE SCATTERED FIELDS FROM A SLIGHTLY ROUGH 
SURFACE FOR VERTICAL POLARIZATION 

Consider a vertically polarized plane wave incident onto a slightly rough surface 8(x,y) 
which is the boundary between two homogeneous dielectric mediums. The geometry of 
the problem is given below. The surface function s(x,y) represents the z distances 
from the xy-plane to the surface. 

s(x,y) 

A right-handed rectangular Cartesian coordinate system is set up with the xy-plane form- 
ing the average value of s(x,y). The xz-plane coincides with the plane of incidence. The 
angle 0 is the angle of incidence. The conditions that must be made upon s(x,y) are 
that it be Fourier transformable and that 

|ks(x,y)|<l, where k = 2ir/X . 

The propagation constant in the medium z < 8(x,y) is designated k  and is equal to 
oifin . The incident magnetic field is in the +y direction, and the component« of the 
total magnetic field in the space z > s(x,y) can be written as: 

H.  = ) EXP, dkK dky (la) 
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Hy = exp(-jkx sine) (exp(jkz cosd) + R|| exp(-jkz cosfl)) 

+ //Gy<k.'ky)EXP.dk.dky 

k^EXP.dk^k 

(ib) 

(1c) 

where EXPj = exp^k^x + jk y - jk^z) and IL is the Fresnel reflection coefficient for 
a vertically polarized wave. The parameters k^  and k    are the Fourier transform vari- 
ables and kI is: 

K-J^K^K when   k   > k^  + k 

k. = 'ifl**K -^       when ka.+k;>^ 
The total magnetic field in the medium z < s(x,y) can be written as 

oo oe 

K =//^^'k
y)EXPadkMdky 

"      " oo oo 

K = T]|exp(-jk'xsin«)cxp(jk'z(os0) + /y Gy(k,,^) EXP, dkxdky     (2b) 

(2a) 

"   =//   F;(kx,ky)EXP2 
dk dk 

K     y 
(2c) 

where  EXPj = exp^k^x+jk y+jk^z) and T.  is equal to I + K,.  . The angle 0 is 
related to 6  through Snell's law. The parameter k    is defined as follows: 

K   =  fl* ■ ^ - ^y 'When    k'2   >   ^   +   K V 

k; = - j 7^+ k2
y - k'2 , when   k'2 < k2,, + k2

y 

If the surface were flat so that 8(x,y) = 0, then the fields that would 1M* obtained are 
those of equations (I) and (2) with the doubled-intcgral terms eliminated. The iech- 
nique of small perturbation requires that the amplitudes IM* written in a perturbation 
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seriet, e^. D^ = Dtl + D^ ♦ D^ + (where the dependence upon k^ and 
ky  haa been omitted). The field» near the interface can be written as follows: 

.exp(jkxx+jkyy)dk]|dky (3a) 

.exp(jki(x+jkyy)dkxdky (3b) 

1 +jk cosö 5  + ^l| -jRi|kzco8Ö 

-em -oo      V 

-^ } 
.cxp(jk]ix+jkyy)dksdky (3«) 

tfy=T|(expHk'xain«)[l+jk'zco.^^Jf2^] +JJ   C^+(C^ 
-«• .oo        ^ 

p,3 + J^^-^y-"-) + • • j -expO^x+jk^dk, dl^    (3d) 

oo oo 

"' 7/{F«+<F«-jk'EF.')+(F^-^Fa-H^)+ j 
pxp(jkIix+jkyy)dk)|dky (3e) 

oo oo 

"; =// {F;;+(Fö + jk'zF'')+fe+jk''zF* ■ H^-) * ) 
. exp(jki(x+jkyy)dkiidky (3f) 
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where the factors exp(-jktz) and exp (jk'tz) have been expanded in a series for the case 
where z is small. At the surface where z = s(x,y), the boundary conditions ri x (H - H) 
and n x (E - E') can be written in component form as 

(4a) 

(4b) 

(H.-H;)* 
$<"■ 

-H;) = 0 

(H,.H;H 
!)<"■ -K) = 0  . 

4  fdHl- az 
z = »(xoO 

jrjk 
+   k'1 

raH, 
ay 

aHyi 
dz 

Z = ( 

+ 
»(x,y) 

aA  5 ffl 
axy jlT V ax k'1 

/air, 3^1 
1 

= 0 
l = 8(x,y) 

ratf     aK 

(4c) 

(4d) JL[
3H

«   lull +M&.^1        + Ik  -aT - ^T * fr   ^T * Ix" + 
J
    l ' «= 8(x,y)   k     l ' z = ^x y) 

(f;)IM^^)^ffi-^I.;!,y) 
In order to determine the six unknown amplitudes, six independent equations are needed; 
so, the four equations above and the two divergence conditions V • H = 0 and V • H = 0 
combine to yield the necessary number of equations. The partial derivatives can be ob 
tained from equations (3). When this is done and only the first order terms are kept, the 
following results are obtained: 

all       fr . 
exp(jk  x+jk y)dk dk 

X J    y J ' %        y 
(5a) 

3,,> 
17 

O»     00 

= iff   Vr. exp(jk x ^-jk y)dkjidk x I   yJ '       x       y (5b) 

oo    ~ 

^=-j//   kiFilexpOkxx+jkyy)dkxdky (5c) 
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dHjL= j fj    KKx «POk. x + jky y)«^^ dky (5d) ax 

an 
^L= j // kyG;. «P(JkJ|x+jkyy)dkidky (5e) 

r=-i// k:F;.«pokIx+jkyy)dk)idky (so 
aK 
"aä 

^ = J // kyF« exPOk,"+ iK y) dk. dky (sg) 
a 
"ay 

aH. 
ax 

an 

00      n* 

= }jf   k,I;,exPOk«x+jkyy)dksdky 

an 
"äx ~ — jksin./exp(-jkx«infl) < ^ + jkz cosÖ(l -R||)} 

oe   00 

iff   k.Gylexp(ikIx+jkyy)dklldky 

3 

~a 

<5h) 

-gj-  = exp(-jkx sinff) |jk co»fl(l - R^ - k ZGO8,«(1 + R^) I 

U J   k'Gy'exp(JkxX+ikyy)dk»dky (50 

(5j) 

on   00 

I**'*//' k^>exP(Jk«x+Jkyy>dk«dky (5k) 

oe   00 

~ = iJJ   k.',;i
PXPOk.''+^yy)dk.dky (51) 
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£-'//>- exp(jkxx+jkyy)dk||dky (5m) 

-r— = T|| exp(-jkx8in^)<jk'co8^-zk'cos'^? 

+ j// ^ exP<Jk.x+Jkyy>dk.dky 
(5n) 

ir^iff  klD.1«P()k1|x+jkyy)dk8dky 

^= j//kl **exp(ikt ■ *ik>y) dk"dk* 

3H: 
—y- =.jk nne T| exp(-jkx sin») 11 + jk « cos^) 

+ j//k.G;i^:>,i>ikyy)dkKdky 

- oo -oo 

oo    oo 

^r=j// kyD," expOk.x+Jk
yy)dkKdk

y 

(5o) 

(5p) 

(5q) 

(5r) 

Substituting equations (5) into the boundary conditions of equations (4) and the two di- 
vergence equations and evaluating the result at -c = s(x,y) yields the following six alge- 
braic equations with six unknowns: 

»..= D;. 

k ?. = kyGy. 
+ k«D.. 

(6a) 

(6b) 

(6c) 

(6d) 

Kl 
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Vkk'  +»,kyk'aFII ♦flk.k-'G,, -fik'^F.; ♦uk^G;, +Wkka=0 (6e) 

-''k'ik.D«. - rt'KF.. "^KKi + *****Ki + kk',so = 0 (6f) 

when': j(k:, - k'a ) (1 - Rn) cosfl S(ks + ksinö, ky ) 
<?t= 2^k 

V  = - jT||r?k8in fl(k - k'1) S(kJc + ksinff, ky)/2irk 

W   =j(kx +k8inÖ)»7T||8infl(k2-k'1)S(kit + ksinfl, k^^irk'2 

So  = iky IT* «n 0 (k1 - k'2) S (k% + ksinfl, ky )/21rk', 

oe    oo 

S(kx+k8in9,ky) = ^ I j   8(x,y) exp (-j(kx+k8ine)x - jkyyl dy dx 

Use has been made of the relation (k' cos0 - R.. k' <,o.s0)/k = T..k'cos0 . For this anal- 
ysis, interest is only in the fields above the interface so that solutions need only be 
found for the terms Dxl, G   , and Fg| . Using equations (6), solutions can be obtained 
for these three terms: 

D    = Boa,, -A^, 

■"      aii a22 - ao a2i 

"'        «11   a2J   - ai2   a2l 

k G„. +k Ü 
F..   = _    y   yl x    xi 

where 

A. = -nk'k^^Q, -rjk.k'kJO, -W^^kk'2 - Vk.k^k'1 

B0 = kik'ikk'2S0-r,kJkxkykiQ, 

a,, = ^Kk'2
+nk;k'Ik'2+T?k'k:'yki+T,k2k;2ki 

a., = Tjk k.k' k    +i}k k k.k       N 
12 '    y    x x ' y    I    x 

a2i = "k'k^k;^ +nk,k,kfky 

a„ = rjk^^k'. +T,k'2k2
)(k; +7,^^^ ^n^k2^ 
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APPENDIX B 

DERIVATION OF AVERAGES USED TO CALCULATE 
MEAN BACKSCATTER ED POWER 

This appendix presents the derivation of the necessary averages that were used to deter- 
mine expressions for mean powers. The two-dimensional gaussi&n distribution of two 
random variables z and z   with zero means is 

z - 2Czz' + z' 

2na  yi-t- I       2o,(l-Ca)    J 

C is the autocorrelation coefficient; 

o   is the variance. 

The two-dimensional characteristic function x (v,, v2) of the distribution p(z,z') if 

X(v,'vj) =JJ e^^e^1 p(z,z')dzdz' 
- oo   -oo 

X (v,, v2 ) = exp |-2 a2 (v[ +2(; v, v, + vj )| 

The first function that will be averaged is 

Where k,   is an arbitrary function of the angle of incidence 6 

oo      oo 

<ejk"(I-0>   =/y ejk',e-ik«I'p(z,z)dzdz' 

-oo   -oo 

By analogy with the characteristic function x{vl ,v2), it can be seen that v1 - kj   and 
v, ■• - k   . The n'«|uir<(l average is then 

<e,k'(,-0> = exp(.kJ
8a,(l-C)l 

In order to calculate <ZX e  '       *>, it is necessary to rewrite the quantity inside the 
brackets as 
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<z.^.<»-«V.^.5t<«,|jk1(z-z>)}> 

where u = x - x' and v = y - y' 

<ZI(e
,"'l       '> = -jkIa   ^j expl-k,«» (1-C)| . 

The average <Z e •    '    > can be computed in exactly the same manner as above, 
but the work is done with y and v instead of x and u. When this is done, the result 
becomes 

<Zye«k.^',>=-jkIo
J|iiexp(-k1V(I.C)|. 

To calculate the average <Zx Z^e ' '   >,   it is necessary to rewrite the quantity in the 
brackets as 

jKj "dJTjEj dxl J 

<Z Z'^'-V  = -L   ^  <e» x   * L2    3u 
Ki 

2 
= - a 

The rest of the averages which depend solely on the large surface undulations can be 
computed in a manner similar tu the above methods and the results will be stated here 

<Z  Zeik"(2-Z')>   =<ZZ  e*. (*-*')> = 

2/ aV. t .2  2/3(:\/ac\\      . ,3 0<ä^ + k. ^ l3n-;lW],'xp|-k'0 
2
(i-(:)I 

* 

H4 



m 

<Z;C*.(Z-Z'>> ^^^.^"^ -jk.a'  ^expI-k^a'd-OI 

<z„z:e*.<z-z>>=.aj to + KV(|£)j«pr.KV(i.c)i 
y   y 

The averages that occur with the slightly rough surface s(x,y) are much more complicated, 
however, if we could compute <SS*exp(jas - ja*s')> , all the other averages can be deter- 
mined by methods used for the large undulations alone. The Fourier transform of s(x,y) 
is S(kx, ky) and can be written as 

S(k ;,ky) = jr/'/8(x,y)e-Jk«)te-V  dydx 

<SS#exp(ja8 - ja#s' 

= < 
4jr' 

)> = <'^ffff**cikx' e**' e'ikyy <*'*yi**r'**' 

- exp (jas - ja#8)> 

JJJJ 81s2e•,k»xe,k;■,l' e'*»" e^'expO«^ - j««i4)dydxdy'dx> 

s, =8(x,y)a2 =8(x',y)a, =8(xf,y")84 =8(x"', y") 

= -T- / / / /  e■,k«,' e^'e^* .■J,Vy <«, SjCxpOaa, - ja»84)> dydxdy'dx' 

The multivariate gaussian characteristic function is given by the following equation: 

MOV, jv2,jv3,jv4)=yyyy wt*»+** * »* p(8i,«2^,s4)dsld«2dsJd«4 

the quantity p(s|,82,Sj, s4) is the multivariate gaussian distribution function. From Daven- 
port and Root,   the multivariate characteristic function can also be written as the follow- 
ing equation when the means of all four variables are zero: 

4 4 

M(JVJv2,jv3,jv4) = exp < - i 2^ Z-f N-ivi { m = 1   n = I 
n  m I X     = a a   C  mn        n   m    "■» 

13 Dtvenporl and Root, An Introduction to the Theory of Random SignoUond yoüe, McGraw-Hill, 1958, p. I S3. 
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VM 
ä^ 

=ffff8,,,e,¥38, eiV4,4p(8', ^'^ d8' ^ d8»d^ *V*0     J J J J V,» V. * 0 

= <818iexp(jv38j+jv4g4)> 

MÖVJVJVJV^eXp   {-l^..^  +X.J
V

J
V.  +X.3V3\  +XMV.V4 

+ K\\*\i\  *Xaivivj+^.vav4+XJ|v,v,+XMv,vJ 

+ SJ^ + X34V3V4 + ^4, v, v4 + X42v4v2 + X^^v, + X^v^ )J 

When   m = n, C^ = 1. For a stationary process a' = o, = o'= o4
2 • Then X,, = 

M (jv,,jv2, jvg, jv4) = exp^fX,, (vf + Vl
2 + y\ + v») + 2X)2 v, v, 

+ »,, V. V, + 2X14 v, v4 + 2X„ v, v, + 2XM v3 v4 + 2XJ4 v, v4 | } 

d^U; = - Xn «P f 7lXii<vI + vi + S + v4 ) + ZX.jV.v, + 

2X1,vlv| + 2X14v1 v4 + 2X„vavJ + 2XJ4v3v4 + 2X14vJv4 ) | 

♦K^+X^v,+Xl,vJ+X14v4l I^v.+X^v.+^v.+X«^) 

•'*''p|4l\.(v;+vJ
1+vJ

2
+v4

1) + 2X12v1vI + 2X1,v|vJ + 

2XI4v1 v4 + 2X2Jv2 v, + 2X24v1v4 ♦ 2XMV3V4 | J 

=   {+XI1   -(X.3V
J
+\4V4)(\3VJ+X24V4)l 

rv2=0 ' 

• «P(-JIXII(VJ+V4
,
)+2XMVIV4|} 

8v»dvi 

V3 =■ v,. = - a* 

X1I   '"I  (:1I   ' X13   -a!Cl3    ' ^,4   ::0!C14 

X,,- 0,(^3, \4=ai(^4    ' X34:;0|(:»4 
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It can earily be seen that the term (X,, s + X|4 v4 XX,, S + ^a4 v4) w 0' ^ ortler 0' S « 
while the term X,,  is of the order of a, . The variance of the slightly rough surface 
(a, ) will always be smaller than one for the wavelengths to be considered in this report. 
Therefore, the term (X^v, + X14v4)(A„v, + X,4 v4) can be neglected with respect to 
X,, . The above equation can then be written as 

a'M 
dVjdV, 

». ■"•"• 

= aXexpf-il^+a^VZaa^'l} 

<SS# cxp(ja8 - ja#8')>   • TW / / / e'Jk"', «"*"y e^'e^'^Cj^x - x', y- y) 

• dydxdy'dx'expt- T't (*' + a*' - 288*0^1 > 

x-x'=u       y-y'=v C|2(u,v) = C^^v) 

<SS»exp(jas-]»•«)> - ^fffft^t^^KV^VJ 

• (^ (u,v)dudvdx dy  • exp^-^-o, |a  + a**-288*^ | i 

since the surface is the same in all cases with respect to correlation C^ = C, (u,v) . Inte- 
grating the abuve equation in x' and y', the Dira«; delta functions ap^M-ar. 

<SS*exp (jas - ja#8)>  * 
oo am 

6 (k; - kx ) 6 (k; - 1^) a,2 /Tc, (u,v) e-,k» " eN v du dv 

• expf-^of (a2 + a*1 - 2aa#C1ji 

The double integral in the last equation represents the roughness spectrum W (kx ,ky): 

W(k,,ky)= jS;/y C1(u,v)e-,k«u e'Vdudv 

The final average is then 

<SS*exp(ja8 - ja*8)> * 2nb (k; - k,) 6 (k; - ky) o' W (k^ ,ky) 

• exp <- yo'la2 +a*2-2aa#(:i || 
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.■iimai.pwiim<P!«WpipiHnnLV«*'Mim<i>'i «rvrin.i n mm^m.j^. 

When C, (u, v) is gaussian and of the form 

C.M.v) = *-<-'♦ ^ 

then W(kx,kv)ii( «'->> 

I2 

W(k.,ky) = i-exp{.[kl
s + kJ

yJlV4} 

In the derivations of the analysis section of the report, kx  must be replaced by k^ + 
k.sinö'and is actually approximated with kx + k sinö . 

The calculation of the average <8x SS#exp(ja8 - ja#8')> can be performed easily 
now as shown below: 

<8llSS»exp(ja8.ja»8')> *-^ ^ <SS-exp(ja8-jaV)> 
Ja 

*jrÄ<ss#expO-«-j«^-f^ 

<8jsSS*exp (jas - ja«8')> * -1 ^j-12»« (1^ - ky) 6 (k, - k,,) 

.W(kx,ky)aI
2exp|. io/la'+a^^aa'CjJ 

%  -Ja#0'l7 2n8(kx-kx)8(ky-ky)W(k%,ky) 

.expl-i-«,1 (a' + a^^aa^ll 

U.^ing tlii> same technique, the following averages can be computed easily: 

<8ySSVxp(ja8-jaV)>  *  -j2na»o; -^-«(k -kx)6 (ky - ky) 

• W(ki|,ky)cxp|-}aI
,fa, + a*2-2aan:i)} 

<8ÄSS*exp(ja8-ja#«')> * -j2ffaa;   -J.6(k    k )s (k   .k v 
Oil MM y y 

• W(kii,ky)exp|. la,2 (a2 + a»2 - 28.^, )| 
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4 ac. 

. W(k,fky)exp|.^-of[>
,+.»,-2M*C1lJ 

<8ii•;SS#cxp (jas - ja#8)> *  - 2*0^ 6 (k; - k,,) 6 (k; - ky ) 

• expl-^a'I«'+a«2-2.a«CIl| 

<8y8ySS»exp(ja8-ja»8)> *  - 2™; 6 (k - kJS (ky - k^) W (k^) 

•[I7L + 0.2aa#(^L)}exp{■T0.,lal+a#, 

-238*^11 

<si(8' SS* exp (jas-ja*s)> = <» 8^ SS*Pxp(ja8 - ja#8)>  * -2^0, 

• Mkx - k J 6 (ky - ky) W (k,, ky) I^A + a.1 aa-(^l) (^)| 

• exp    <-  -2 Oj  | a  + a*   - 2aa#(^| | > 

All the required averages needed to derive average power have now been determined. 
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APPENDIX C 

EVALUATION OF INTEGRALS 

This appendix shows the derivation of some of the integrals needed in the analysis 
section of the report. The two basic parameters which are used in the needed integrals 
are a and r. There is only one integral in r that needs to be specified and this can be 
obtained from Gradshteyn and Ryzhik.I4 

/' + '   -«', i /«^       /Jvexp(-^/4a) 
'      e       -MW * =        fc-pi 

o 

One of the integrals in a which must be calculated is: 

/JJT 

co8(a)e-^nWda 
o 

Let      u = jßsina 

du = j(? cos a da 

/if r r0 

.   .    -j^intt   . /                -u       du I     /   -u,        .. cos (a) e ^     da = / coi a c ^-a  = -rr I e   du = 0 x ' J jßcosa jß J 
o o . 

L'sing the above result will permit the evaluation of the integral: 

f" 1    hin a < 

0 

.-^d« 

sin a - -j» 1° J. + j «-osa 
/»2ff 

/    sin a do = - 

r 
J      sin a 

0 

^"nada --- 

-jßllna   .      .    .    / -jßtinO   . 
e da + i  I     cos a e da d..]/ 

o 

l4l. & (;ridihteyn, I. M. Kyihik, labbtoflnttgrmUSerieiandProduetM, Acadrmir Pros, Inc., 1965. 
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The J functions are Messe! functions of the first kind: 

sin a e-'^da = -j&J.W 

The next integral which must be evaluated is 
/vr 

cos a e da . 

o 

This integral can be worked by using the method of integration by parts: 

u - cos a 

dv = cos o e K      da 

du = - sin a da 

hin a i«* 
/2ir ^» iff 

2     -ißiina , icosa     -ißtina ]** ^  i   / 
cos a e IK       da = LZj,—  e 'K T /      s,n a -ilisinQ Ha 

o o 

cos a c ^       da = 0 + i I      sin o e 'K       d 

o o 

/ 
2        .J0.ina,           2»J«J) 

cos a e da  ~  '■  

Another integral which nerds to be evaluated: 

.2ff /iff 

2       -ißiina sin a e da 

/2ff >.2ff -2ff 
.   2 -i^lina   . I -l/JunO   . / 2 sin a e K       da = I     e K       da - I      cos a e ,K        da 

2.|tW-^ 

-(^-^1 
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The last integral which needs to be evaluated is: 

/tu 

co» a sin a e'J***n0£lo 

This integral can be solved by using the method of integration by parts: 

u = sin a 

dv = cos o e da 

du = cos a do 

j   -J^rna 
7 

/ 

/ 

2ff 211 

cos o e da 

in 

.sin a cos a e ^•taada = 0 
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